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The multiwavelength anomalous diffraction (MAD) method is used to determine phase information in

x-ray crystallography by employing anomalous scattering from heavy atoms. X-ray free-electron lasers

(FELs) show promise for revealing the structure of single molecules or nanocrystals, but the phase

problem remains largely unsolved. Because of the ultrabrightness of x-ray FEL, samples experience

severe electronic radiation damage, especially to heavy atoms, which hinders direct implementation of

MAD with x-ray FELs. Here, we propose a generalized version of MAD phasing at high x-ray intensity.

We demonstrate the existence of a Karle-Hendrickson-type equation in the high-intensity regime and

calculate relevant coefficients with detailed electronic damage dynamics of heavy atoms. The present

method offers a potential for ab initio structural determination in femtosecond x-ray nanocrystallography.
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The determination of the 3D structure of proteins and
macromolecules is crucial to understand their biological
functions at the molecular level. X-ray crystallography has
been widely used for structural determination [1], but it
suffers from two bottlenecks: the phase problem and grow-
ing high-quality crystals. The phase problem [2,3] is a
fundamental obstacle in constructing an electronic density
map from x-ray diffraction. Multiwavelength anomalous
diffraction (MAD) [4–6] with synchrotron radiation is one
of the major achievements to address this issue. X-ray free-
electron lasers (FELs) [7] promise to have a revolutionary
impact on molecular imaging [8,9], overcoming the crystal
bottleneck. The unprecedented high x-ray fluence provides
a sufficiently large number of photons to enable structure
determination from diffraction measurements of streams of
single molecules [9–11] and nanocrystals [12,13].
However, due to an extremely high fluence that is "100
times larger than the conventional damage limit [14],
samples are subject to severe radiation damage [15]. The
ultrashort x-ray pulses generated by x-ray FELs enable us
to carry out ‘‘diffraction before destruction’’ within femto-
second time scales to suppress nuclear motion [9].
Nonetheless, electronic damage [9,16,17] during femto-
second x-ray pulses is unavoidable, leading us to consider
‘‘diffraction during ionization’’ [18]. This electronic radia-
tion damage is particularly challenging when addressing
the phase problem by anomalous dispersion [19], because
heavy atoms as anomalous scatterers will be more ionized
than other atoms during intense x-ray pulses. Therefore, it
has been speculated that MAD would not be an applicable
route for phasing in the presence of severe radiation dam-
age [1,19]. Here we propose a high-intensity version of the
MAD phasing method based on a detailed description of
the electronic response at the atomic level. In contrast to
the speculation, our results show that MAD not only works,
but also that the extensive electronic rearrangements at

high x-ray intensity provide a new path to phasing. We
will then demonstrate that this approach is applicable to the
phase problem in femtosecond x-ray nanocrystallography
[12,13], which is one of the most prominent topics in x-ray
FEL applications.
X rays mainly ionize inner-shell electrons and subse-

quent relaxation (Auger decay and fluorescence) fills the
inner-shell vacancy. Therefore, sequences of photoioniza-
tion and relaxation can strip off many electrons after
absorbing several photons [20]. For heavy atoms that
have more than two subshells, a vacancy in deep inner
shells causes several relaxation steps in the cascade
through the subshells, resulting in further electron ejec-
tions [21]. To simulate the electronic damage dynamics,
we use the XATOM toolkit [18,22], where all rates and cross
sections are calculated within the nonrelativistic Hartree-
Fock-Slater method and multiphoton electronic dynamics
is described by sequential one-photon processes with all
n-hole electronic configurations. Figure 1 depicts the time
evolution of populations for several charge states of an iron
(Fe) atom where 27 783 coupled rate equations were
solved. The photon energy is 8 keV and the fluence is
5# 1012 photons=!m2. The pulse duration is 10 fs
FWHM with a Gaussian envelope. In these conditions,
the neutral Fe is completely depleted and high charge states
such as Fe20þ are substantially produced by the end of the
pulse. The pulse-weighted charge state averaged over time
is about þ12, demonstrating the severe electronic damage
incurred during the x-ray pulse.
This electronic damage affects not only the coherent

scattering atomic form factor but also its dispersion cor-
rection. Near an inner-shell absorption edge, resonant elas-
tic scattering causes the atomic form factor to depend on
the photon energy !,

fðQ; !Þ ¼ f0ðQÞ þ f0ð!Þ þ if00ð!Þ; (1)
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where Q is the photon momentum transfer. The XATOM

toolkit has been extended to compute the dispersion cor-
rection, f0 þ if00 [22]. In Fig. 2, one can see remarkable
changes of the dispersion correction for different configu-
rations and different charge states of Fe. Both f0 and f00

have a singular position at the K-shell edge, which is
shifted to a higher ! by "1 keV as the charge state
increases. The plotted curves in Fig. 2 correspond to the
configurations of the ground state and the single-core-hole
state (except for the neutral Fe) for given charge states.
Since the MAD phasing method is based on the dispersion
correction of heavy elements, it is inevitably required to
take into account the electronic damage dynamics and
accompanying changes of the dispersion correction under
intense x-ray pulses.

In the MAD phasing method, the Karle-Hendrickson
equation [23,24] represents a set of equations of scattering
cross sections at several different wavelengths (photon
energies). The molecular scattering form factor is sepa-
rated into normal and anomalous scattering terms and the
phase information can be derived from their interferences.
In this Letter, we show that a Karle-Hendrickson-type
equation exists in the high-intensity regime with extensive
electronic damage on anomalous scatterers.

Let P be any protein (or any macromolecule) whose
structure we want to solve by coherent x-ray scattering. Let
H indicate heavy atoms and NH be the number of heavy
atoms per macromolecule to be considered. Note that P
excludes H. Our assumption is that only heavy atoms
scatter anomalously and undergo damage dynamics during
an x-ray pulse. It is justified by the fact that the photon
energy of interest is near the inner-shell ionization thresh-
old of heavy atoms and the photoabsorption cross section"
of the heavy atom is much higher than that of the light atom
for a given range of !. For example, "Fe="C ( 300 at
8 keV, and there is almost no dispersion effect on carbon
(C) near this photon energy [see Fig. S1(b) in Ref. [25]].
The scattering intensity (per unit solid angle) is evaluated
by [25]

dIðQ; !Þ
d!

¼ FCð!Þ
Z 1

!1
dtgðtÞ

X

I

PIðtÞ

#
!!!!!!!!F

0
PðQÞ þ

XNH

j¼1

fIjðQ; !ÞeiQ)Rj

!!!!!!!!
2
; (2)

where j denotes a heavy atom index and I indicates a
global configuration index. The global configuration for
NH heavy atoms is given by I ¼ ðI1; I2; . . . ; INH

Þ. Here Ij
indicates the electronic configuration of the jth heavy
atom, which is located at position Rj. This electronic
configuration provides, among other things, information
on the charge state of the atom. PIðtÞ is the population of
the Ith configuration at time t. It is assumed that the heavy
atoms are ionized independently, so the population of I is
given by a product of individual populations, PIðtÞ ¼
"NH

j¼1PIjðtÞ. F is the x-ray fluence and gðtÞ is the normal-

ized pulse envelope. Then the x-ray flux is given byF gðtÞ,
which is assumed to be spatially uniform throughout the
sample. Cð!Þ is a coefficient given by the polarization of
the x-ray pulse.
In Eq. (2), F0

PðQÞ is the molecular form factor for the
protein (without any dispersion correction), and our pur-
pose is to solve its amplitude and phase, F0

PðQÞ ¼
jF0

PðQÞj exp½i#0
PðQÞ+. fIjðQ; !Þ is the atomic form factor

(with the dispersion correction) of the jth heavy atom in its
Ijth configuration. It is most instructive to consider only
one heavy atomic species. We introduce a molecular form
factor for undamaged heavy atoms,

F0
HðQÞ ¼ jF0

HðQÞjei#0
HðQÞ ¼ f0HðQÞ

XNH

j¼1

eiQ)Rj ; (3)

where f0HðQÞ indicates the normal scattering atomic form
factor for the ground-state configuration of the neutral
heavy atom.
Now Eq. (2) can be expanded to demonstrate the exis-

tence of a generalized Karle-Hendrickson equation [25],
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FIG. 2 (color online). Dispersion corrections of atomic form
factors for selected configurations of several charge states of Fe.
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FIG. 1 (color online). Population dynamics for several selected
charge states of Fe during an x-ray pulse. The thin dotted line
indicates the Gaussian pulse envelope. See the text for parame-
ters used.
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dIðQ; !Þ
d!

¼ FCð!Þ½jF0
PðQÞj2 þ jF0

HðQÞj2~aðQ; !Þ þ jF0
PðQÞjjF0

HðQÞjbðQ; !Þ cos½#0
PðQÞ !#0

HðQÞ+

þ jF0
PðQÞjjF0

HðQÞjcðQ; !Þ sin½#0
PðQÞ !#0

HðQÞ+ þ NHjf0HðQÞj2faðQ; !Þ ! ~aðQ; !Þg+; (4)

where the new MAD coefficients depending on Q and !
are defined by

aðQ; !Þ ¼ 1

ff0HðQÞg2
X

IH

#PIH jfIH ðQ; !Þj2; (5a)

bðQ; !Þ ¼ 2

f0HðQÞ
X

IH

#PIH ff0IH ðQÞ þ f0IH ð!Þg; (5b)

cðQ; !Þ ¼ 2

f0HðQÞ
X

IH

#PIHf
00
IH
ð!Þ; (5c)

~aðQ; !Þ ¼ 1

ff0HðQÞg2
Z 1

!1
dtgðtÞj~fHðQ; !; tÞj2: (5d)

Here IH indicates the electronic configuration of the heavy
atom species and #PIH ¼ R1

!1 dtgðtÞPIH ðtÞ is the pulse-
weighted averaged population for the IHth configuration.
The new MAD coefficients of Eqs. (5a)–(5d) are atom
specific and must be calculated with electronic damage
dynamics and configuration-specific atomic form factors.
The coefficient a is an incoherent average of jfIH j2 with
#PIH . The coefficients b and c are the real and imaginary
components of the averaged atomic form factor, respec-
tively. The coefficient ~a in Eq. (5d) is obtained through a
dynamical form factor defined by

~fHðQ; !; tÞ ¼
X

IH

PIH ðtÞfIH ðQ; !Þ; (6)

which is a coherent average of the configuration-specific
form factors over IH at a given time t. This ~a coefficient
thus represents the effective scattering strength of the
heavy atom. In contrast to the original Karle-
Hendrickson equation, Eq. (4) is separated into light atoms
(P) and heavy atoms (H) because both electronic damage
and anomalous scattering are treated exclusively on H. If
only the ground-state configuration is considered, i.e., no
electronic damage occurs, then a ¼ ~a and Eqs. (4) and (5)
are reduced to the original Karle-Hendrickson equation
except for the separation of P and H.

This generalized Karle-Hendrickson equation consti-
tutes a set of equations with different ! at every Q. In
Eq. (4) there are three unknowns: jF0

PðQÞj, jF0
HðQÞj, and

#0
PðQÞ !#0

HðQÞ for a given Q. With three or more differ-
ent !, those unknowns can be solved by the least-squares
method [26,27]. Combined with Patterson or direct meth-
ods [28,29], the amplitude and phase of heavy atoms can be
determined, so two unknowns of jF0

PðQÞj and#0
PðQÞ are to

be solved with two different !. Once all amplitudes and
phases of P and H are determined, it is straightforward to
construct the total structure of T ¼ PþH. To obtain non-
trivial solutions from the least-squares method, the contrast

between the coefficients at two different ! must be non-
zero. This condition is fulfilled even in the presence of
severe electronic damage as shown in the following dis-
cussion. We emphasize that, if the MAD coefficients are
predetermined experimentally or theoretically, then one
can solve the structure (amplitude and phase) from diffrac-
tion measurements directly, without any iterative phase
retrieval algorithms [30].
Let us consider Fe atoms embedded in a protein and then

radiate an x-ray pulse of 2# 1012 photons and 10 fs
FWHM into the sample. Figure 3 displays ~a, b, c, and
(a! ~a) for the forward direction (Q ¼ 0) computed by the
extended XATOM toolkit [22]. The fluence F is given by
2# 1012 photons=A where A is the focal spot area. When
high charge states are generated by ionization dynamics,
the scattering strength is lowered due to the reduced num-
ber of scattering electrons and the change of the dispersion
correction. The degree of lowering in ~a and b shows
different behaviors below and above the neutral Fe edge.
Below the edge, the scattering strength is less lowered than
above the edge because ionization dynamics are domi-
nantly initiated by L-shell ionization whose cross section
is 8 times smaller than that of K-shell ionization [31].
Above the edge, K-shell ionization channels are open
and lead to further cascade decays, stripping off more
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FIG. 3 (color online). Coefficients in the generalized Karle-
Hendrickson equation for Fe as a function of the photon energy.
The fluence is given by 2# 1012 photons=A, where A is the focal
spot area.
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electrons. As a result, ~a and b are dramatically bleached
out and their minimum is deepened and broadened. The
absolute value of c, which corresponds to the averaged
absorption cross section, is decreased as the fluence
increases.

This bleaching effect on the scattering strength is bene-
ficial to the phasing problem in two ways. First, the con-
trast of the coefficients to be exploited in the MADmethod
is enhanced. Even though the scattering strength is lowered
for all !, Figs. 3(a)–3(c) clearly show that the low-
intensity cases (long-dashed and short-dashed lines) dis-
play a contrast similar to the conventional MAD method
(solid lines). For the high-intensity cases (dotted and dash-
dotted lines), the contrast in ~a and b becomes even larger
when ! is chosen below the edge and around the mini-
mum. The contrast in c is reduced to some extent but is not
completely eliminated. It is worthwhile to note that broad-
ening of the edge at high intensity makes precision of !
less important in experiments. Second, it brings an alter-
native phasing method similar to single isomorphic re-
placement (SIR) [3] or radiation-damage induced phasing
(RIP) [32]. By choosing one ! below and one ! above the
edge, one can create two data sets that differ only in
the scattering strength of the heavy atoms, and then solve
the rest of the structure by density modification. In this
method, there is neither atomic replacement in sample
preparation like SIR nor chemical rearrangement during
the x-ray pulses like RIP. Therefore, the rest of the struc-
ture remains invariant in the two different data sets.

Now we discuss experimental implementation of the
generalized version of the MAD phasing method. We
used a Gaussian pulse in the above calculations.
However, when the scattering strength of dI=d! is mea-
sured at a particular Q and !, the pulse shape gðtÞ and the
fluence F at a given position x in the x-ray beam
may differ from shot to shot. Following the procedure
in Ref. [33], we numerically confirmed that
hdI½F ðxÞgðtÞ+=d!i ( dI½hF ðxÞgðtÞi+=d! to within 3%,
where h)i denotes an ensemble average. Then the total
signal can be obtained by integrating over the interaction
volume,

R
d3xdI½hF ðxÞgðtÞi+=d!# nmolðxÞ, where

nmolðxÞ is the molecular number density. In this process,
the MAD coefficients are calculated with given hF gðtÞi,
and the basic structure of Eq. (4) remains unchanged.

In our model, resonant absorption processes and
shakeup or shakeoff processes [34] are neglected. They
tend to generate further high charge states, so the contrast
enhancement and the bleaching effect would remain after
inclusion of these processes. We note that the effect of
impact ionization [35] on coherent diffractive imaging may
be suppressed by using a sufficiently short x-ray pulse [18].

The structure of the generalized Karle-Hendrickson
equation [Eq. (4)] can be fully functional for phasing of
nanocrystals, which are of current interest for structural
determination with x-ray FELs [12,13]. In Eq. (3), F0

H

contains the structure factors of the heavy atoms. In the
case of crystals, the heavy atoms are regularly located and
can contribute to the Bragg peaks when satisfying Q )
ðRi !RjÞ ¼ 2$n (n is an integer) for all i and j. In
Eq. (5d), ~a is expressed with the coherent average over
configurations, and jF0

Hj2 from Eq. (3) is expressed with
the coherent summation over heavy atoms. Therefore,
jF0

Hj2~a ¼ R1
!1 dtgðtÞj~fHðQ; !; tÞPNH

j¼1 exp½iQ )Rj+j2 im-

plies that all heavy atoms are described by the same
dynamical form factor. This term is then responsible for
the Bragg peaks (/ N2

H). On the other hand, the term
NHjf0Hj2ða! ~aÞ represents fluctuations from all different
configurations induced by electronic damage dynamics,
corresponding to the diffuse background (/ NH). As shown
in Fig. 3(d), (a! ~a) increases as the fluence increases.
However, it is an order of magnitude smaller than ~a and
not confined to the Bragg peaks, implying that the high
x-ray intensity does not fully destroy the coherent
signals.
In conclusion, we have proposed the MAD phasing

method in extreme conditions of ionizing x-ray radiations.
We assume that the scattering factors of the light atoms of
the protein do not vary significantly over the measured
range of x-ray frequencies, and that these atoms have
normal scattering and no ionization. It is also assumed
that the heavy atoms are ionized independently and only
one type of heavy atoms is considered. We believe that the
method should work even if these assumptions are re-
moved, because the most important consequence of high-
intensity x-ray irradiation—multiple ionization of the
heavy atomic species—has been fully taken into account.
We have combined electronic response at the atomic level
and molecular imaging during intense x-ray pulses and
demonstrated the existence of a generalized Karle-
Hendrickson equation for the MAD method at high x-ray
intensity. The relevant coefficients to be used in the MAD
method have been formulated and calculated with damage
dynamics and accompanying changes of the dispersion
correction. We have shown that the generalized equation
is still applicable to the phase problem even in the presence
of severe radiation damage. The bleaching effect on the
scattering strength of heavy atoms, which unexpectedly
enhances the coefficient contrast in the MAD method,
can be beneficial to phasing. Our study opens up a new
opportunity of solving the phase problem in femtosecond
nanocrystallography with x-ray FELs.
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Supplement: Derivation of a generalized Karle–Hendrickson

equation for the high-intensity regime

Sang-Kil Son1, Henry Chapman1,2, and Robin Santra1,2
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2Department of Physics, University of Hamburg, Hamburg, Germany

In this supplemental material, we derive a generalized Karle–Hendrickson equation for the high-
intensity regime, including electronic damage dynamics of heavy atoms. This is the key equation
for our proposed multi-wavelength anomalous diffraction (MAD) method at high x-ray intensity.

The main assumption is that only heavy atoms scatter anomalously and undergo electronic damage
dynamics during an x-ray pulse. It is justified by the fact that the photoabsorption cross section
of the heavy atom is much higher than that of the light atom for photon energies of interest, so
damage dynamics of the light atom is insignificant in comparison with that of the heavy atom.
Figure S1(a) shows the time evolution of populations for several charge states of carbon, indicating
that only 5% of neutral carbons are ionized. Moreover, the dispersion correction for the light atom
is negligible for a given range of photon energies, because 6–10 keV are far from the K-shell edge
of light atoms and their positive ions. Figure S1(b) clearly shows that there is no dispersion for
carbon on the effective scattering strength during an x-ray pulse. For comparison, we put the curve
of iron with the same fluence, showing a big contrast with the dispersion effect on the scattering
signal. Consequently, we assume that only heavy atoms show anomalous scattering and undergo
electronic damage dynamics.

Let P be any protein (or any macromolecule), H be heavy atoms, and NH be the number of heavy
atoms to be considered. With the above assumption, the scattering intensity is written as
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, (S1)

where j denotes a heavy atom index, and I indicates a global configuration index given by I =
(I1, I2, · · · , INH

). Ij indicates the electronic configuration of the j-th heavy atom, which is located
at Rj . The charge state of the j-th heavy atom is determined by Ij. PI(t) is the population or
probability of the I-th configuration at time t. F 0

P (Q) is the molecular form factor of the protein,
which, according to the above assumption, refers to the neutral ground state of the protein and
does not depend on the photon energy ω. fIj(Q,ω) is the atomic form factor of the j-th heavy
atom in its Ij-th electronic configuration, which includes the dispersion correction, fIj(Q,ω) =
f0
Ij
(Q) + f ′

Ij
(ω) + if ′′

Ij
(ω). Q is the photon momentum transfer, F is the x-ray fluence, and g(t) is

the normalized pulse envelope. C(Ω) is a coefficient given by the polarization of the x-ray pulse.
For example, if the x-ray pulse is linearly polarized, then C(Ω) = α4(1 − cos2 φ sin2 θ), where α is
the fine-structure constant, using atomic units.
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Figure S1: (a) Population dynamics for +0, +1, and +2 charge states of carbon during an x-ray
pulse of 8 keV, 5×1012 photons/µm2, and 10 fs FWHM. Other charge states are negligible. The
thin dotted line indicates the Gaussian pulse envelope. (b) Effective scattering strength (MAD
coefficient ã) for carbon (C) and iron (Fe) with an x-ray pulse of 5×1012 photons/µm2 and 10 fs
FWHM.

In Eq. (S1), the scattering intensity is evaluated by a statistical average. The contributions from
different global configurations are added up incoherently for the following reasons. First, hard-
x-ray pulses from free-electron lasers such as the Linac Coherent Light Source (LCLS) at SLAC
National Accelerator Laboratory have an ultrashort coherence time (of the order of 100 attoseconds
or less). Second, because all the photoelectrons and secondary electrons are not observed in an x-ray
scattering measurement, one is effectively tracing over all these unobserved degrees of freedom, thus
leading to a complete loss of coherence in the reduced density matrix for the residual system. Note
that experiments carried out at LCLS demonstrate that a pure rate-equation description completely
suffices to describe ionization even for isolated atoms [20], where a complete measurement would, in
principle, be easier to realize than for the nanocrystals of interest here. Further note that Eq. (S1)
leads to the same expression as obtained in Ref. [17], except for the dispersion correction for heavy
atoms.

Equation (S1) can be expanded as follows. For simplicity, the explicit dependence of the atomic
form factor on Q and ω is omitted.
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Since the heavy atoms are usually far apart from each other, electronic configurational changes in
one heavy atom do not affect changes in other heavy atoms. In other words, the ionization dynamics
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in one heavy atom is independent of the ionization dynamics in other heavy atoms. The population
of the I-th configuration is then given by the product of the individual atomic populations,

PI(t) =
NH
∏

j=1

PIj (t). (S3)

The summation over I in Eqs. (S1) and (S2) is equivalent to summing over Ij for all j, i.e.,
∑
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and for averaging of AIi and BIj ,
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After averaging with these relations, Eq. (S2) goes over into
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(S6)

where P̄Ij =
∫

∞

−∞
dt g(t)PIj (t) is the pulse-weighted averaged population of the Ij-th configuration

of the j-th heavy atom. So far, by means of proper averaging, we have converted the summation
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over global configurations {I} into the summation over local configurations {Ij} for each atom.
If we know the temporal population profile {PIj (t)} for each atom, we can then calculate the
scattering intensity including all different global configurational changes. Thus, Eq. (S6) provides
a general expression for all different types of heavy atoms.

As a next step, it is most instructive to consider only one heavy atomic species. In this case, the
general equation of Eq. (S6) can be further simplified, delivering new insights for MAD phasing in
femtosecond x-ray nanocrystallography. Each heavy atom undergoes damage processes indepen-
dently, but the temporal population profile is the same for all heavy atoms. Thus, Ij is denoted
as IH , where IH indicates the electronic configuration of the heavy atomic species. Then Eq. (S6)
yields
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Now we introduce a molecular form factor for the undamaged heavy atoms,

F 0
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eiQ·Rj , (S8)

where f0
H(Q) indicates the atomic form factor, without the dispersion correction, of the ground-

state configuration of the neutral heavy atom. Note that f0
H(Q) is factored out from the summation

over j because all heavy atoms are assumed to be of the same type. At Q = 0, f0
H(0) = Z, where

Z is the nuclear charge of the heavy atom. From a phase relation of F 0
H(Q),
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one can simplify the summation over j using the phase φ0
H(Q),
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and the square of Eq. (S9) gives an expression with a double summation over i and j,
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After plugging Eqs. (S10) and (S11) into Eq. (S7), one obtains the main equation as follows,

dI(Q,ω)

dΩ
= FC(Ω)

[

∣

∣F 0
P (Q)

∣

∣

2
+

∣

∣F 0
H(Q)

∣

∣

2
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This proves the generalized Karle–Hendrickson equation of Eqs. (4) and (5) in the original paper.
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