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X-ray free-electron lasers (XFELs) have brought new ways to probe and manipulate atomic and molecular
dynamics with unprecedented spatial and temporal resolutions. A quantitative comparison of experimental
results with their simulated theoretical counterpart, however, generally requires a precise characterization of
the spatial and temporal x-ray pulse profile, providing a nonuniform photon distribution. The determination of
the pulse profile constitutes a major, yet inevitable, challenge. Here, we propose a calibration scheme for intense
XFEL pulses utilizing a set of experimental charge-state distributions of light noble gas atoms at a series of pulse
energies in combination with first-principles simulations of the underlying atomic x-ray multiphoton ionization
dynamics. The calibration builds on Bayesian optimization, which is a powerful, machine-learning-based tool
particularly well suited for computationally expensive numerical optimization. We demonstrate the presented
scheme to calibrate the pulse duration as well as the spatial fluence distribution profile of XFEL pulses. Our
proposed method can serve as a comprehensive tool for characterizing ultraintense and ultrafast x-ray pulses.
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I. INTRODUCTION

The development of x-ray free-electron lasers (XFELs)
as radiation sources of ultrashort x-ray pulses with unprece-
dented intensity and brilliance [1,2] has opened new pathways
to probing and controlling atomic and molecular dynamics
with extraordinary resolution, and consequently it has become
well established for studying a huge variety of phenomena
covering structural biology [3–5], ultrafast x-ray atomic and
molecular physics [6–9], as well as dense matter physics [10].
Prominent examples demonstrating the outstanding opportu-
nities of XFELs include serial femtosecond crystallography
[11] and single-particle imaging [12,13], both aiming for
atomic spatial and femtosecond time resolutions [14–18].

The interaction between the XFEL pulse and the target,
such as molecules, atoms, and ions, is highly dependent
on the photon distribution within the x-ray pulse, particu-
larly when multiple photons are involved in the physical
processes. However, the photon distribution generally does
not follow a uniform but rather a nonuniform distribution
depending on time, i.e., the pulse duration, as well as on
the spatial pulse profile in the focal spot [19]. Therefore,
a range of different photon fluence values covered by the
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distribution contributes to the light-matter interaction, and
simulating such experiments necessarily involves the summa-
tion of all fluence-dependent contributions calculated with the
actual photon fluence. This procedure, referred to as volume
integration [20,21], requires a precise spatial and temporal
characterization of the photon distribution of the XFEL pulse.

Direct measurements of XFEL pulse fluence distributions
constitute a significant experimental challenge yet to be
solved. The spatial properties of a focused x-ray beam can, for
instance, be characterized using the ablation imprint method
[22–26]. Yet, this method cannot be employed in situ, imped-
ing its inclusion into experimental routines. The Hartmann
wavefront sensing method [27–30], in contrast, provides an
in situ single-shot characterization of the spatial beam profile,
but its applicability to high-fluence x-ray beams is limited.
Additional methods for beam characterization include grat-
ing interferometry [31,32], the Ronchi test [33,34], curved
grating monitors [35,36], diffraction with aerosol spheres
[37], ptychographic imaging [38], and speckle visibility spec-
troscopy [39]. Although they provide the beam shape and
thus the shape of the spatial fluence distribution, they gener-
ally do not retrieve the fluence values on an absolute scale
required for volume integration. Additionally, second-order
intensity correlation measurements, also referred to as Han-
bury Brown–Twiss (HBT) interferometry, are able to explore
intensity correlations at different spatial or temporal positions
and may subsequently be used for determining spatial coher-
ence and the average pulse duration [40–47].

Here, we follow a different approach: Instead of a fully
experimental pulse characterization, we show that the spa-
tial and temporal fluence distribution can be obtained from
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a quantitative comparison between theoretical and experi-
mental charge-state distributions (CSDs) that are generated
by x-ray multiphoton multiple ionization of light noble gas
atoms, e.g., neon (Ne), resulting from the interaction with
ultraintense and ultrashort XFEL pulses. The exposure to such
strong x-ray pulses results in x-ray multiphoton ionization
[48] characterized by a sequence of photoabsorption events
accompanied by Auger-Meitner and x-ray fluorescence de-
cays [49]. Multiple photoionizations along with subsequent
decay cascades can lead to highly charged states of the in-
volved atoms [20,50,51] or molecules [52]. Measurements
of generated ion fragments are relatively straightforward,
only requiring ion time-of-flight (TOF) detection, which is
accessible at nearly every XFEL instrument dedicated to gas-
phase studies [53–55]. As the observed ion yields represent
ensemble-averaged quantities accumulated over many shots,
our aim is an ensemble-averaged rather than a single-shot
pulse characterization.

The obtained experimental results are subsequently com-
pared to their numerically simulated equivalents. For the
latter, we employ the ab initio electronic-structure toolkit
XATOM [56,57], which, for any given element and electronic
configuration, calculates orbitals, orbital energies, photoion-
ization cross sections, and fluorescence and Auger-Meitner
rates based on a Hartree-Fock-Slater approach. The x-ray mul-
tiphoton ionization dynamics are then simulated by solving a
set of coupled rate equations employing the calculated rates
and cross sections. This approach has been well tested with a
series of gas-phase XFEL experiments (for a review, see Ref.
[57] and references therein). As demonstrated in Ref. [21],
using CSDs of (light) atoms, like Ne or argon (Ar), comes
with several advantages as they are highly sensitive to the
peak fluence as well as the fluence profile in the focal spot
due to the high nonlinearity of the XFEL-matter interaction.
Furthermore, the number of involved electronic configurations
of light atoms compared to heavier atoms is small, thus re-
ducing the computational effort for simulating the ionization
dynamics.

For a quantitative comparison with the experimental re-
sults, the CSDs obtained from XATOM simulations have to be
volume-integrated. To do so, we assume a specific functional
form of the spatial and temporal fluence profile at the focal
spot, depending on a few parameters, instead of a pointwise
mapping of the fluence distribution as a function of position
and time, respectively. By introducing a loss function to quan-
tify the deviation between theory and experiment, the pulse
characterization ultimately aims at minimizing the loss func-
tion with respect to the assumed set of pulse parameters. This
approach has already proven its general capability for char-
acterizing the spatial fluence profile [21], but up to now has
not been applied to calibrating the pulse duration. To this end,
we take advantage of CSD measurements at several different
pulse energies, in contrast with the conventional calibration
conducted at a fixed pulse energy.

Numerical optimization of black-box functions, i.e., func-
tions that only provide the functional value itself but lack
further information such as the gradient, can be accom-
plished by a huge variety of different algorithms, referred
to as meta-heuristic methods [58]. Prominent examples are
simulated annealing [59,60] and derivatives thereof [61–64],

particle swarm optimization [65–67], and differential evolu-
tion [68,69]. To obtain an appropriate approximation of the
function’s extremum, however, the listed methods generally
require a large number of function evaluations on the con-
sidered domain, usually drawn at random from a predefined
probability distribution, such that, statistically, the whole do-
main is sufficiently explored. In spite of the efficiency of
XATOM, the computational cost of simulating the ionization
dynamics with a huge amount of different parameter sets,
hence evaluating the loss function in a high-dimensional
parameter space, renders the application of meta-heuristic
optimization techniques unfeasible.

In contrast, our proposed XFEL calibration builds on
Bayesian optimization (BO) [70–72]. Based on a continuously
updating machine-learning model, BO makes a sophisticated
prediction where it is most beneficial to search for the func-
tion’s optimum, rather than drawing random samples from the
domain. The obtained function value at the proposed position,
in turn, eventually improves the underlying model and the
accompanying quality of the predicted extremum. By incor-
porating the obtained knowledge on the objective function in
the numerical optimization, BO has proven its capability to
accurately and efficiently solve optimization problems, par-
ticularly when a rigorous exploration of the search domain is
hampered by the computational costs of the objective func-
tion. As such, it is applicable to a huge variety of scientific
fields, including hyperparameter tuning of machine-learning
and deep-learning models [73,74], chemical synthesis guid-
ance [75], prediction and customization of material properties
[76–78], solving inverse problems in physics and model pre-
diction [79,80], preparation and control of ultracold atoms
[81–83], and optimization and control of accelerators [84] and
free-electron lasers [85] (see Ref. [70] and references therein
for a more extensive review on BO applications).

Throughout this work, we perform the XFEL pulse cal-
ibration based on experimental data recorded at the Small
Quantum Systems (SQS) scientific instrument at the Euro-
pean XFEL [54,86–89] in connection with the experiment
by LaForge et al. [90]. Our results show that the proposed
calibration scheme of utilizing experimental CSDs of light
noble gas atoms at a series of pulse energies along with their
theoretical counterpart is well suited for determining both
the pulse duration and spatial fluence distribution of intense
XFEL pulses subsequent to the actual experiment. The accom-
panying optimization task is efficiently and accurately solved
using Bayesian optimization.

The structure of this manuscript is as follows: In Sec. II,
we introduce the loss function required for calibration and
provide the needed theoretical background. Bayesian opti-
mization as the backbone of our calibration is described
in Sec. III. We provide an in-depth discussion of the ob-
tained results in Sec. IV, before concluding this work in
Sec. V.

II. CALIBRATION OUTLINE

The proposed scheme for the calibration of intense XFEL
pulses builds on a quantitative comparison of experimental
and theoretical CSDs of light noble gas atoms, e.g., Ne. In
contrast to previous work on XFEL calibration [21], where the
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FIG. 1. Experimental and theoretical CSDs (ion yield as a function of charge state) of Ne at a photon energy of 1550 eV with two calibration
schemes: (a) calibration at a fixed pulse energy and (b) calibration using a series of pulse energies (present work). The pulse energies in (a) and
(b) refer to the nominal experimental pulse energies Ei. The transmission of the beamline is taken into account in terms of the scaling factor
sE for computing the theoretical CSDs.

CSD at only one pulse energy was considered [see Fig. 1(a)],
we utilize a range of pulse energies and corresponding CSDs,
as illustrated in Fig. 1(b). This is enabled by shot-to-shot
fluctuations of the pulse energy during the pulse train, which
provide a spectrum of CSDs at different pulse-energy bins. We
assume that, if no external beam attenuator is employed, the
average XFEL pulse shape remains unchanged. Similarly, the
use of gas attenuators for varying the pulse energy, which ide-
ally attenuate the pulse energy uniformly, would also provide
a CSD spectrum without affecting the pulse shape [86]. The
use of solid-foil attenuators, however, considerably affects
the spatial fluence distribution [21]. Also we cannot rule out
that a drift of the electron bunch during the long pulse train
influences various pulse parameters.

Utilizing a series of pulse energies provides more data
points for comparison with the theoretical CSDs. In Fig. 1(a),
only ten points are available for calibration using Ne, while
there are 10N points in Fig. 1(b), where N is the number
of distinct pulse-energy bins extracted from experiment. In-
cluding more data points in the calibration is beneficial for
resolving subtle dependences of the CSDs on both fluence and
pulse duration. Furthermore, the pulse-energy dependence of
the ion yields, whose slope in a log-log-graph [Fig. 1(b)] be-
fore saturation [21] provides the number of absorbed photons,
is naturally incorporated in the calibration procedure. After
saturation, the corresponding ion yield needs to be excluded
in the conventional one-pulse-energy calibration scheme [21],
which hinders the fluence distribution calibration in the high-
fluence regime, where many charge states become saturated.
The proposed calibration scheme, which systematically cov-
ers a range of pulse energies before and after saturation, can
overcome this difficulty.

The experimental data set contains a series of ion yields
y(+q)

exp (Ei ) for charges +q ∈ Qs, recorded at N different pulse
energies Ei (i = 1, . . . , N ). Here, Qs denotes the set of se-
lected charges considered for the calibration. To obtain the
theoretical counterpart y(+q)

theo , volume integration constitutes
an essential step, incorporating a range of photon fluences
provided by the fluence distribution function of the XFEL

pulse. See Ref. [21] for details on volume integration. To
characterize the fluence distribution function, we employ a
double Gaussian spatial profile (DGSP), in which the spatial
pulse shape is described by two Gaussian profiles, giving
rise to a narrow high-fluence peak and a wide low-fluence
tail [86], in the two dimensions perpendicular to the beam
propagation. The dependence of the fluence distribution on the
beam propagation direction is neglected with the assumption
of the Rayleigh length being longer than the ion detector slit
size [21]. In this case, the fluence distribution function is
determined by a set of parameters, P = ( fr,wr, sE ), where
fr and wr, respectively, describe the fluence and width ratios
between the first and second Gaussians. The additional param-
eter sE is a scaling factor for the pulse energy, in connection
with the ratio of the transmission T of the x-ray optics and the
focal spot size � of the first Gaussian: T/�2 = sE (T ′/�′2),
where we choose fixed values of T ′ = 1 and �′2 = 1 μm2 in
practice. With these parameters, the peak fluence of the DGSP
corresponding to the pulse energy Ei (with a photon energy of
ω) is given by

Fi = 4 ln 2

πω

1 + fr

1 + frw2
r

(
T ′

�′2

)
sE Ei. (1)

In this way, the theoretical counterpart of ion yields for Ei

is represented as y(+q)
theo (Fi; P). The ansatz of a DGSP is a

convenient parametrization of the spatial fluence profile that
has been shown to provide volume-integrated ion yields that
are in good agreement with experimental results [52,91–93].
Note that there are generally no restrictions for parametrizing
the shape of the spatial fluence distribution profile. For in-
stance, it is possible to use the spatial shape from a ray-tracing
simulation of the beam or a wavefront sensor measurement
[86] with suitable parametrization.

We calibrate XFEL pulses by determining suitable pa-
rameters P∗ = ( f ∗

r ,w∗
r , s∗

E ) such that the difference between
experiment and theory is minimized. To that end, we introduce
the loss function L as the cumulated logarithmic difference be-
tween the experimental ion yields y(+q)

exp (Ei ) and the theoretical
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predictions y(+q)
theo (Fi; P),

L(P) =
N∑

i=1

∑
q∈Qs

[
log10

y(+q)
theo (Fi; P) · Y

y(+q)
exp (Ei )

]2

w
(+q)
i . (2)

The sums run over all pulse energies and selected charges
Qs. In principle, the weighting factors w

(+q)
i can be based

on the experimental uncertainties, ε
(+q)
exp (Ei ), for the yields of

the measured charge states. For example, one may employ the
Gaussian form

w
(+q)
i = exp

⎡
⎣−α

(
ε

(+q)
exp (Ei )

y(+q)
exp (Ei )

)2
⎤
⎦, (3)

where α is a real coefficient. For the experimental data con-
sidered in the present work, we have numerically verified that
minimization of L for α = 10 and 0 (i.e., w

(+q)
i = 1) does not

give any significant difference (not shown here). Thus, we do
not account for the experimental uncertainties in the present
work. By log-scaling the ion yields, we ensure that all ion
yields contribute equally to the loss function despite spanning
several orders of magnitude. To match the different absolute
scales of the ion yields, we introduce a global factor Y that is
dynamically determined such that it minimizes L according to
∂L/∂Y = 0,

log10 Y = −
∑N

i=1

∑
q∈Qs

[
log10

y(+q)
theo (Fi;P)

y(+q)
exp (Ei )

]
w

(+q)
i∑N

i=1

∑
q∈Qs

w
(+q)
i

. (4)

Note that in the previous calibration procedure using one pulse
energy [21], as shown in Fig. 1(a), both experimental and
theoretical CSDs are individually normalized such that the
sum over ion yields equals unity [21], while Y represents a
global normalization factor in the present procedure.

Considering the loss function in Eq. (2), the calibration of
intense XFEL pulses boils down to a numerical optimization
problem. Here, Eq. (2) represents a black-box function as
its evaluation does not provide any additional information on
functional properties and, therefore, precludes the use of, e.g.,
gradient-based optimization methods. Meta-heuristic meth-
ods [58] provide a wide variety of algorithms for numerical
optimization of such black-box functions. These methods,
however, are known to require a large number of function
evaluations in order to provide reliable results. This makes
their use disadvantageous for the outlined calibration scheme
as Eq. (2) involves computationally expensive simulations
of x-ray multiphoton ionization dynamics, limiting the num-
ber of evaluations available. To overcome this limitation, we
employ Bayesian optimization [70–72], a machine-learning-
based method that is particularly well suited for numerical op-
timization of computationally expensive black-box functions.

Powered by Bayesian optimization, which will be ex-
plained in the subsequent section, we introduce an additional
fit parameter for calibration, the pulse duration τ , referring
to the full width at half-maximum (FWHM) of the ensemble-
averaged temporal profile. The latter is assumed be a Gaussian
function. The CSDs become sensitive to the pulse duration
when the pulse duration competes with the lifetime of core-
hole states [20,94] or the x-ray intensity is sufficiently high
such that the photoionization rate competes with the decay

rate of core-hole states [95]. Then, the parameter space to
be optimized becomes four-dimensional: P = ( fr,wr, sE , τ ).
Such a high-dimensional parametric space is already unfa-
vorable for a brute-force search. For example, if only 100
cases are sampled for each parameter, then the total number
of brute-force searches is 108. As will be demonstrated in
Sec. IV, this number of iterations is dramatically reduced
when using Bayesian optimization. The set of parameters
considered in this work is of course not unique but depends on
the assumed spatial and temporal pulse profile. The outlined
calibration, however, can be applied to any set of parameters
necessary to appropriately parametrize the pulse profiles.

III. BAYESIAN OPTIMIZATION

Bayesian optimization (BO) [70–72] is an iterative
method for numerically maximizing a target function
f : U ⊂ Rd → R, which is assumed to be continuous
throughout this work. The key paradigm of BO is not to
draw random samples from a probability distribution at which
the target function is evaluated, like it is done in simulated
annealing [59,60], for instance, but to propose an x ∈ U with
the highest expected benefit. The prediction is based on the
knowledge of the target function obtained from previous func-
tion evaluations. This approach makes BO particularly useful
when evaluating f is computationally expensive, thus limiting
the total number of function evaluations. The BO algorithm
generally consists of two main components:

(i) A surrogate model: Based upon all available function
evaluations, a probabilistic model of the function, dubbed
surrogate, is built. The surrogate provides a predicted value
along with an uncertainty measure for any unknown input
x ∈ U . Here, we choose Gaussian processes, the most com-
mon surrogate model.

(ii) An acquisition function: The acquisition function an-
alyzes the surrogate model and assigns a numerical value
encoding the desirability to each point in the domain of f .
The maximum position of the acquisition function indicates
the point with the highest expected benefit, which is there-
fore the most promising subsequent point for evaluating f .
The result, in turn, improves the underlying surrogate model,
eventually leading to an updated acquisition and prediction of
the maximum.

A. Gaussian process regression

Gaussian process regression (GPR) [70,96] is a supervised
machine-learning technique, i.e., the attempt of approximat-
ing the target function f based on a collection of n labeled
examples, D = {(xi, yi )|i = 1, . . . , n}, called training data.
The input xi ∈ U is referred to as a feature vector, and its
individual elements x( j)

i ( j = 1, . . . , d) are called features.
The labels yi are considered continuous throughout this work.
We further assume yi to be noiseless observations of f , i.e.,
yi = f (xi ). With that, we introduce the more compact notation
of an input matrix X ,

X = (x1, . . . , xn) =

⎛
⎜⎝x(1)

1 · · · x(1)
n

...
. . .

...

x(d )
1 · · · x(d )

n

⎞
⎟⎠, (5)

and a corresponding label vector y = (y1, . . . , yn)�.
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The fundamental idea of GPR is to assign probabilities to
every possible function instead of a priori restricting the re-
gression to a certain class of functions, e.g., linear, quadratic,
or trigonometric functions. High probabilities indicate func-
tions that are considered to be more likely, also incorporating
prior knowledge or assumptions of functional properties. The
prior distribution of functions represents the beliefs in the
kind of functions expected to be observed before seeing any
data. The training data D restrict the function distribution
such that it only contains those functions consistent with
the observations. The combination of the prior distribution
and the training data yields the posterior distribution over
functions.

A Gaussian process g f for modeling the target function f ,
written as [96]

g f (x) ∼ GP (m(x), k(x, x′)), (6)

is a collection of random variables, any finite number of which
have a joint Gaussian (normal) distribution. It is entirely spec-
ified by a prior mean function m : U → R and a positive
semidefinite covariance (kernel) function k : U×U → R,

m(x) =E[g f (x)], (7)

k(x, x′) = cov(g f (x), g f (x′))

=E{[g f (x) − m(x)][g f (x′) − m(x′)]}, (8)

with E[·] and cov(·, ·) denoting the expectation value and the
covariance of two random variables, respectively. For a given
covariance function, Eq. (8) enables an explicit formulation of
the cross-covariance matrix,

K (X, X ′) =

⎛
⎜⎝k(x1, x′

1) · · · k(x1, x′
m)

...
. . .

...

k(xn, x′
1) · · · k(xn, x′

m)

⎞
⎟⎠, (9)

with X = (x1, . . . , xn) and X ′ = (x′
1, . . . , x′

m) denoting two
input matrices, as defined in Eq. (5). For X = X ′, Eq. (9) gives
the covariance matrix, with the diagonal entries being the
variances, var(g f (x)) = cov(g f (x), g f (x)). Throughout this
work, we follow the common assumption of a zero-mean and
unit-variance, var(g f (x)) = k(x, x) = 1, of the prior distribu-
tion, and we incorporate this assumption by normalizing the
labels when determining the posterior distribution. However,
this does not imply the function values of the prior distribution
or the predicted mean values on unseen data are zero.

Evaluating the Gaussian process for an arbitrary feature
x before taking into account the labels y of the training data
yields a random number g f |x, which follows the prior normal
distribution,

g f |x ∼ N (0, K (x, x)). (10)

Similarly, when applied to the training features X , the
Gaussian process gives a random vector g f = (g f (x1), . . . ,
g f (xn)), following a multivariate normal distribution,

g f |X ∼ N (0, K (X, X )). (11)

The joint normal distribution of the priors g f and g f defines
the joint prior distribution of the Gaussian process [96],[

g f
g f

]
∼ N

(
0,

[
K (X, X ) K (X, x)
K (x, X ) K (x, x)

])
. (12)

The posterior distribution is obtained by restricting the joint
prior distribution such that it only contains functions that
are in agreement with the observed training data. This corre-
sponds to conditioning Eq. (12) on the observations [96], i.e.,
g f = y and

g f |x, X, y ∼ N (μ(x), σ 2(x)), (13)

with μ and σ 2, respectively, denoting the predicted mean,

μ(x) = E[g f |x, X, y] = K (x, X )K (X, X )−1y, (14)

and the predicted variance,

σ 2(x) = var(g f |x, X, y)

= K (x, x) − K (x, X )K (X, X )−1K (X, x). (15)

Equations (14) and (15) are the central quantities of the GPR
and an integral part of the BO algorithm: The mean predicts
the value of the target function f at each input point x, while
the variance provides an uncertainty measure of the predic-
tion. By construction, GPR exactly reproduces the training
data, i.e., μ(xi ) = yi and σ 2(xi ) = 0 (i = 1, . . . , n).

Through Eq. (9), the quality of the predictions using GPR
strongly depends on the choice made for the covariance (ker-
nel) function k and its parameters. The squared exponential
(SE) covariance function constitutes the most common choice
in the context of BO and is used throughout this work (the
SE covariance is sometimes referred to as the radial basis
function, although this term applies to isotropic kernels in
general) [70,72,96]:

kSE(x, x′) = exp

(
− r(x, x′)2

2

)
. (16)

Here, r(x, x′) is the anisotropic distance between two feature
vectors, x and x′,

r(x, x′) =
√

(x − x′)�M(x − x′), (17)

M being a d×d diagonal matrix containing the squared char-
acteristic inverse length scales θ2

i (i = 1, . . . , d ). Therefore,
the GPR with a SE covariance kernel contains d model param-
eters, denoted θ = (θ1, . . . , θd ), which are chosen such that
they maximize the probability of the model parameters based
on the given training data p(θ|y, X ). Here, the label vector
y is treated as a random sample drawn from the multivariate
normal distribution in Eq. (11). Using Bayes’ theorem and the
fact that the choice of θ is independent of the training input X ,
i.e., p(θ|X ) = p(θ), the probability of the kernel parameters θ

conditioned on the training data is given by

p(θ|y, X ) = p(y|X, θ) p(θ)

p(y|X )
. (18)

This equation is approximated by the likelihood p(y|X, θ),
describing the probability to obtain the labels y by randomly
sampling from the probability distribution in Eq. (11) at the
input X , evaluated for a specific choice of θ. By definition of
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the Gaussian process, the likelihood follows a normal distri-
bution [96]:

ln p(y|X, θ) = −1

2
y�K (X, X )−1y

− 1

2
ln |K (X, X )| − d

2
ln 2π. (19)

The likelihood p(y|X, θ) implicitly depends on θ through the
definition of the covariance matrix in Eq. (9) and the specific
choice of the SE covariance function in Eqs. (16) and (17).
Finally, the optimal kernel parameters θ∗, indicating the model
that is most likely to produce the labels y at the input X , are
determined by maximizing the (logarithmic) likelihood,

θ∗ = argmax
θ

ln p(y|X, θ). (20)

When updating the training data D by adding additional fea-
ture vectors and corresponding labels, Eq. (20) has to be
solved numerically, yielding an updated best model.

B. Acquisition function

Beside the surrogate model, the acquisition function α

constitutes the main component of BO as it defines the search
strategy for finding the maximum of the target function. A
vast number of different approaches for constructing both
effective and efficient acquisition functions exist, categorized
in different classes such as improvement-based policies, opti-
mistic policies, and information-based policies [70,72]. Here,
we choose the common but by no means exclusive upper
confidence bound (UCB) acquisition function, categorized as
an optimistic policy. Following its guiding principle of being
optimistic in the face of uncertainty, it corresponds to effec-
tively using a fixed-probability best-case scenario according
to the applied surrogate model [70,72]:

αUCB(x) = μ(x) + κσ (x), (21)

where μ and σ denote the predicted mean value and cor-
responding standard deviation of the underlying Gaussian
process, given by Eqs. (14) and (15), respectively, and κ

constitutes a free hyperparameter. The choice made for κ � 0
is essential for a well-performing optimization as it incorpo-
rates a tradeoff between exploitation and exploration of the
search space. Generally, small values favor the exploitation of
already known regions in the search domain. This results in
quick convergence but comes at the risk of getting stuck in a
local maximum. In contrast, large values favor the exploration
of lesser known regions increasing the probability of finding
the global maximum. However, this comes with slower con-
vergence. An attempt at tuning the optimization with respect
to κ is presented in Sec. IV.

As the acquisition is an (optimistic) estimation of the tar-
get function, its maximum position indicates the estimated
maximum position of the target function and, therefore, it
constitutes the most beneficial position for the next function
evaluation according to the chosen search strategy. The result,

in turn, is used to update the surrogate model and the acquisi-
tion function until a maximum number of function evaluations
is reached. This procedure delegates the numerical optimiza-
tion of the target function f to two consecutive numerical
maximizations in each iteration of the BO, namely training
the Gaussian process surrogate model by solving Eq. (20),
and suggesting a new feature vector by maximizing Eq. (21)
with respect to x. The likelihood in Eqs. (19) and (20) as well
as the acquisition in Eq. (21) as a composition of the pre-
dicted mean and variance in Eqs. (14) and (15), respectively,
are fully expressible in terms of the kernel function through
the definition of the cross-covariance matrix in Eq. (9). The
explicit choice of the SE kernel function in Eqs. (16) and
(17) therefore provides algebraic and differentiable expres-
sions for the likelihood and acquisition as functions of the
model parameters θ and feature vectors x, respectively, which
enables an efficient numerical optimization of Eqs. (20) and
(21). For both tasks, we employ the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm with bound constraints
(L-BFGS-B), as provided by the SCIPY library [97].

Note that the presented implementation of BO is de-
signed for numerical maximization. The XFEL calibration,
however, builds on minimizing the loss function in Eq. (2).
Therefore, for calibration of the x-ray pulse, we maximize
the negative loss. For the sake of simplicity and clarity, we
still refer to minimizing the loss function throughout this
paper.

IV. XFEL PULSE CALIBRATION

In the following, we perform an XFEL-pulse calibration
using experimental data obtained by LaForge et al. [90] at
the small quantum systems (SQS) scientific instrument at the
European XFEL [54,86–89]. The experiment was conducted
with a photon energy of ω = 1550 eV. The pulse duration
deduced from the width of the electron bunch was 25 fs,
although the analysis indicates an actual pulse duration of
∼10 fs full width at half-maximum (FWHM) [90]. The in-
vestigated data set consists of ion yields for Ne probed at 12
different pulse energies between 0.5 and 6 mJ measured by
an x-ray gas monitor detector [98]. The pulse energy varied
due to shot-to-shot fluctuations within the pulse train, which
ideally do not affect the spatial pulse profile. Alternatively, a
gas attenuator can be used in experiment to ensure a constant
spatial profile at varying pulse energies [99]. We describe
the calibration procedure for Ne in detail. The corresponding
CSDs are depicted in Fig. 1(b). In principle, the presented
calibration procedure is applicable to Ar as well, and both
Ne and Ar have been widely used for determining the spa-
tial fluence profile [21]. However, we found that the Ar data
that were obtained in the same experimental run [90] are not
suitable for calibrating the pulse duration because the CSDs of
Ar are not sensitive to variations of the pulse duration at the
considered photon energy of 1550 eV (see Appendix A for
details).

The theoretical CSDs are obtained by simulating x-ray
multiphoton ionization dynamics of Ne interacting with an
intense XFEL pulse employing the XATOM [56,57] toolkit.
Computational details of the XATOM simulations performed
are given in Appendix B.

023114-6



MACHINE-LEARNING CALIBRATION OF INTENSE X-RAY … PHYSICAL REVIEW RESEARCH 5, 023114 (2023)

FIG. 2. Manual search for the loss function’s minimum at different but fixed pulse durations τ . The pulse parameters fr , wr characterizing
the spatial profile are scanned with a respective step size of 0.01. sE is chosen such that it minimizes the loss for each point of ( fr, wr ) and τ .
The minima and corresponding pulse parameters determined in this way are listed in Table I.

A. Tuning the BO search algorithm

Before turning to the calibration of the full four-
dimensional parameter space including the pulse duration,
we tune the BO algorithm by varying κ , and further test
the accuracy and efficiency of our approach to determine
the spatial profile of an XFEL pulse from experimental CSD
data. To that end, we perform a brute-force minimization of
the loss function for several different but fixed pulse dura-
tions τ by manually scanning the parameter space, and we
compare the results with those obtained with BO. We define
the search space for both the manual search and the BO as
S′ = [0, 1]×[1, 4]×[0.01, 100] such that ( fr,wr, sE ) ∈ S′. To
obtain a good approximation of the loss function’s minimum,
we vary ( fr,wr ) on a (101×301)-sized grid. To make it com-
putationally feasible, we do not manually vary sE for each
( fr,wr )-pair. Instead, we interpolate the respective functional
dependence on sE using cubic splines based on 50 precal-
culated data points. Then, we minimize the interpolated loss
function with respect to sE . The results of this manual search
for τ/fs ∈ {1, 5, 10, 50, 100} are depicted in Fig. 2, and the
determined minima and calibrated pulse parameters are sum-
marized in Table I. Figure 2 shows that at each pulse duration
assumed, the loss function has a minimum, and the optimized
parameter set varies for different pulse durations. Such a
brute-force search in three-dimensional parameter space is

TABLE I. Manually calibrated spatial pulse parameters and cor-
responding minimum losses for different fixed pulse durations.

τ (fs) fr wr sE min
P′∈S′

L

1 0.03 3.13 1.18 4.611
5 0.15 2.60 0.37 1.064
10 0.25 2.63 0.33 0.449
50 0.49 3.15 0.42 1.356
100 0.56 3.50 0.51 1.861

computationally expensive and performed only for a few τ

points to generate reference values.
The UCB acquisition function employed in our BO im-

plementation depends on the hyperparameter κ in Eq. (21),
controlling the general search strategy from a more exploring
behavior for high values of κ to a dominantly exploiting
behavior for small κ . For determining appropriate values
for κ , we first perform BO to minimize the loss function
L( fr,wr, sE , τ = 10 fs) on the search space S′ for various
different κ ∈ [0, 4]. For each κ , the optimization is repeated
100 times to get statistically significant properties. Each op-
timization, in turn, starts with two randomly chosen initial
points within S′ and terminates with a total of 500 evaluations
of the loss function. For comparability between the different
settings, we use an identical set of 100 different pairs of initial
points for initializing the BO.

To evaluate whether a BO run was successful, we make
the following considerations: Given a reference minimum
position x∗

ref ∈ S′ (obtained by manually scanning the search
space) and the current minimum x∗

N ∈ S′ after N iterations, we
compute the volume of the three-dimensional ball Vball(r) =
4π
3 r3, with r = |x∗

ref − x∗
N |. Taking into account the different

interval lengths, we normalize each coordinate to the unit
interval [0,1]. Thus, the volume V̄S′ of the normalized search
space equals unity. To quantify the quality of a single opti-
mization run, we introduce η as a measure of by how many
orders of magnitude the search space has shrunk with respect
to the reference minimum:

η = − log10
Vball(r)

V̄S′
= − log10 Vball(r). (22)

A positive value of η indicates an effective reduction of the
search space, whereas η = 0 if the sphere volume equals
the search-space volume. An optimization is considered suc-
cessful if η related to the current sphere volume is greater
than or equal to a predefined threshold value η̃. Since the
manual search for the reference minimum does not provide
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the exact position of the minimum but only an approximation
based on the choice of the grid, we additionally consider an
optimization successful if the loss function is smaller than
or equal to the reference value, even if the η-criterion is not
satisfied. In practice, this case only occurs if the threshold
value is chosen such that the implied distance to the reference
minimum is much smaller than the grid spacing of the manual
search.

Finally, we define the success rate (η̃) as the ratio of
successful optimization runs given a threshold η̃ and the total
number of optimization runs. Here, we choose η̃ = 5 to be
sufficiently precise, i.e., the volume of the sphere is five orders
of magnitude smaller than the search space. Note that this
value corresponds to radii already smaller than the grid spac-
ing used in the manual brute-force search. The success rate
(η̃=5) for τ = 10 fs as a function of the control parameter κ

after several different numbers of iterations Niter is depicted in
Fig. 3(a). For κ ∈ [1, 2], 250 iterations are already sufficient to
achieve a success rate of ∼95%. The success rate only slightly
increases when more iterations are considered. For κ > 2, a
similar success rate can be achieved but more iterations are
needed. In general, κ < 1 gives worse results. Although a high
success rate is of course desirable, we note that even with
much smaller success rates, it is still likely to find the min-
imum of the function (or a sufficiently good approximation
thereof) since, in practice, the optimization is repeated several
times. For instance, if there are 10 optimization runs, a success
rate slightly higher than 60% will consequently lead to at least
one successful run with a probability of 99.99%. Nonetheless,
we recommend choosing κ ∈ [1, 2] for achieving best results.
For the rest of this work, we set κ = 1.5. This choice is
validated by the achieved success rates (5) for the remaining
four pulse durations, as shown in Fig. 3(b). Like before, the
BO starts with two random initial points and is repeated 100
times. Apart from minor deviations during the phase when
the success rate rapidly increases, this choice of κ performs
equally well in terms of the achieved success rate.

B. Full pulse calibration

We now turn to the full pulse calibration, including the
pulse duration τ as an additional pulse parameter to be op-
timized. The search space S is four-dimensional such that
( fr,wr, sE , τ ) ∈ S = S′×[1 fs, 100 fs]. The calibration is re-
peated 25 times, with two random initial points from the
search domain initializing each run. The maximum number
of iterations is increased to 1500. Based on the results of the
3D calibration in the previous subsection, we set κ = 1.5.

The result of the full four-dimensional calibration, i.e.,
the calibration giving the smallest loss function, yields the
calibrated pulse parameters

P∗ = ( f ∗
r ,w∗

r , s∗
E , τ ∗) = (0.262, 2.64, 0.32, 10.9 fs).

The corresponding theoretical ion yields as a function of the
charge in comparison with the experimental CSDs are shown
in Fig. 4, which depicts the same data as shown in Fig. 1(b),
but using a different representation. The overall agreement
between experiment and theory is, apart from small devia-
tions, very good. In particular, the calibrated pulse duration
of ∼10 fs is comparable to the estimated value from the

FIG. 3. Tuning of the control parameter κ of the BO algorithm
for the three-dimensional pulse calibration with fixed pulse duration
τ . (a) Success rate of finding the manually determined loss function
minimum for τ = 10 fs as a function of κ after different numbers
of iterations Niter . Here, a successful optimization run is character-
ized by a three-dimensional sphere with η̃ = 5 (see the main text).
(b) Success rate for different pulse durations as a function of the
number of iterations. Here, the control parameter is set to κ = 1.5.

x-ray resonance-enhanced multiphoton ionization experiment
conducted at the European XFEL [90].

Since a calibration of the spatial pulse profile based on ex-
perimental CSDs has already been realized [21,86], our main
emphasis is the additional determination of the pulse dura-
tion. To verify our procedure, we examine the pulse-duration
dependence of the loss function’s minimum by manually
scanning the search interval [1 fs, 100 fs] and calibrating the
spatial pulse profile for each pulse duration, in a similar
fashion as for the fine-tuning of κ . For this semimanual
three-dimensional calibration of ( fr,wr, sE ), we keep κ = 1.5
and a maximum number of iterations of 300. Each three-
dimensional spatial profile calibration is repeated ten times.
The obtained minimal loss as a function of τ is depicted
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FIG. 4. Experimental and theoretical CSDs, using the calibrated
pulse parameters ( f ∗

r , w∗
r , s∗

E , τ ∗) = (0.262, 2.64, 0.32, 10.9 fs), for
various pulse energies. Markers indicate experimental data; lines
represent theoretical results.

in Fig. 5. The pulse duration yielding a minimal loss is in
perfect agreement with the result obtained in the full four-
dimensional calibration.

Having verified the calibrated pulse parameters, we now
analyze the general convergence behavior taking into account
the results of all 25 performed calibrations. The final pulse
parameters of every run are shown in Fig. 6(a). Each marker
represents the obtained pulse parameters of one optimization,
projected onto two 2D subspaces of ( fr,wr ) and (τ, sE ). Here,
the displayed parameter ranges, containing the results of all
calibration runs, correspond to a volume that is approximately
108 times smaller than the originally considered search-space
volume. To further quantify this accumulation of the obtained
pulse parameters, we investigate the spread of the individ-
ual parameters in terms of the normalized standard deviation
σnorm. Here, “normalized” refers to the fact that all coordi-
nates are normalized to the unit interval taking into account

FIG. 5. Minimum losses as a function of pulse duration ob-
tained from the semimanual calibration. For each τ considered,
the loss function is minimized with respect to the remaining three-
dimensional parameter set ( fr, wr, sE ) using BO. Also shown is the
result of the full four-dimensional calibration.

FIG. 6. Results of the four-dimensional pulse calibration, in-
cluding the pulse duration τ . (a) Projection of the calibrated pulse
parameters onto the ( fr,wr )-plane and the (τ, sE )-plane. Each marker
indicates the result of one of the 25 calibration runs; the overall
minimum is marked in red. All calibration results lie within a volume
that is ∼108 times smaller than the original search-space volume.
(b) Normalized standard deviation σnorm of each determined pulse
parameter as a function of the number of iterations considering
all 25 BO calibrations. (c) Comparison of the normalized standard
deviation σnorm for BO and generalized simulated annealing (GSA).
The colored area marks the spread between the smallest and largest
standard deviation out of the four pulse parameters considered. The
horizontal dashed lines in (b) and (c) indicate the targeted 1% thresh-
old with respect to the individual search intervals.

the different interval lengths. Naturally, a small σnorm indi-
cates convergence of the calibration towards a small region
in search space. Of course, this does not guarantee that the
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true minimum is located inside this region of the search space.
It does, however, provide a measure of confidence regarding
how likely it is for the calibrated pulse parameters to be
located in that specific region. For our purpose, we consider
σnorm = 1% as a significant and desirable threshold for the
calibrated parameters. For each of the four considered pulse
parameters, this threshold is passed after ∼1250 or fewer
iterations, as shown in Fig. 6(b).

Finally, we compare the observed convergence behavior
of BO to the performance of generalized simulated anneal-
ing (GSA) [62,63] as an example of a well-established and
frequently used meta-heuristic method. For this comparison,
we employ the GSA implementation provided by the SCIPY

library [97]. As for BO, the optimization is repeated 25 times
started from random points in the search domain (here, only
a single point is needed to initialize the optimization). The
maximum number of iterations, however, is raised to 10 000.
As before, the normalized standard deviation σnorm is calcu-
lated for each pulse parameter individually. The comparison
between the BO and GSA results is illustrated in Fig. 6(c).
Here, the spread between the smallest σnorm and the largest
value is indicated by colored areas. For GSA, the spread of
σnorm is significantly larger and it takes many more iterations
than for BO to reach the desired threshold (σnorm = 1%).
Here, we used the default settings of the SCIPY implementation
of GSA without fine-tuning.

V. CONCLUSION

The calibration of intense x-ray free-electron-laser pulses
constitutes a challenging task. Yet, the precise characteriza-
tion of the x-ray pulse is essential for quantitatively comparing
experimental and theoretical results. We have proposed a cal-
ibration scheme that combines charge-state distributions of
light noble gas atoms experimentally determined at a series
of pulse energies and their simulated equivalents based on
ab initio ionization dynamics calculations. Using Bayesian
optimization based on Gaussian process regression, we have
determined pulse parameters by minimizing the difference
between experimental and theoretical outcomes. We have
demonstrated in detail how this approach is capable of deter-
mining the spatial pulse profile as well as the pulse duration.
This includes a sophisticated fine-tuning of the Bayesian opti-
mization providing instructive expertise for future calibration
tasks. In the outlined scheme powered by Bayesian opti-
mization, the pulse parameters to be calibrated can be easily
adapted to different models of the spatial and temporal pulse
profiles, with the possibility to further increase the number of
parameters. A comparison of different pulse profile models,
however, lies beyond the scope of this work and remains a
future task. The detailed theoretical description and numerical
simulation of light-matter interaction involving intense x-ray
pulses is still an active field of research and is continuously be-
ing improved [100–102], potentially to be considered in future
calibrations. However, the increasing computational effort on
the one hand and the achievable improvements for the calibra-

tion on the other hand are aspects that have to be considered.
Experimental uncertainties that ultimately imply uncertainties
of the considered loss function have not been considered in
the present work. Besides modifying the loss function through
suitable weighting factors, experimental uncertainties can be
naturally included in the Bayesian optimization, particularly
in the underlying Gaussian process regression, by the as-
sumption of Gaussian noise for these uncertainties. Although
the inclusion of experimental uncertainties in the case of the
present data set does not significantly affect the obtained pa-
rameters of the calibrated XFEL pulse, this remains an open
question for future investigations.

Data recorded for the experiment at the European XFEL
are available on request [103].
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APPENDIX A: CALIBRATION USING AR

In principle, the proposed calibration procedure is applica-
ble to CSDs of other light noble gases. Here, we tested the
calibration with Ar data obtained from the same experiment
as the Ne data [90]. However, the obtained pulse duration
of ∼80 fs differs significantly from the calibrated pulse du-
ration of 10.9 fs obtained from the calibration using Ne. To
identify the origin of this discrepancy, we performed a series
of three-dimensional calibrations of ( fr,wr, sE ) at different
pulse durations, analogously to the procedure for Fig. 5.
Figure 7(a) shows the minimum losses as a function of pulse
duration for Ar, confirming the calibrated pulse duration of
about 80 fs. However, note that the range of minimum losses
in Fig. 7(a) is much smaller than the range in Fig. 5, making
the calibration less reliable. This low sensitivity of the loss
function to variations in the pulse duration stems from the
fact that the Ar CSDs at the considered photon energy of
1550 eV are largely immune to the pulse duration, as depicted
exemplarily for Epulse = 6 mJ in Fig. 7(b). In contrast, the
Ne CSDs exhibit a higher sensitivity to the pulse duration,
particularly well pronounced for the ion yield of Ne10+, as
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FIG. 7. (a) Minimum losses as a function of pulse duration ob-
tained from the semimanual calibration using Ar data. Analogously
to the procedure for Ne described in the main text, the loss function
is minimized with respect to the three-dimensional parameter set
( fr, wr, sE ) for each pulse duration considered. Also shown is the
result of the full four-dimensional calibration. (b) Simulated CSD
of Ar at a photon energy of 1550 eV and a pulse energy of 6 mJ
for different pulse durations, using the respective calibrated pulse
parameters ( f ∗

r , w∗
r , s∗

E ). (c) Same as (b) but for Ne.

shown in Fig. 7(c). Additionally, the ion yield of Ar16+ has
to be excluded from the calibration, because it is sensitive to
second- or higher-harmonic components in the photon-energy
spectrum of the XFEL beam [90]. The remaining ion yields
of Ar, including charges from q = +1 to +15, are virtually
independent of the pulse duration, resulting in a rather flat
distribution, as shown in Fig. 7(a). Therefore, we conclude
that Ar CSDs, at least at a photon energy of 1550 eV, are not
suitable for calibrating the pulse duration. We further suggest
to examine the dependencies of the theoretical CSDs on all
pulse parameters considered before performing a calibration
using experimental data.

APPENDIX B: XATOM CALCULATIONS

All simulated CSDs used for the reported calibrations
were obtained using the XATOM toolkit. In XATOM [56,57],
the Schrödinger equation is solved within the Hartree-Fock-
Slater model. By imposing spherical symmetry on the electron
density, each Hartree-Fock-Slater one-electron wave function
may be written as a product of a radial function and a spherical
harmonic. For bound states, the radial wave functions for each
orbital-angular-momentum quantum number l considered are
computed by constructing a matrix representation of the
Hartree-Fock-Slater mean-field Hamiltonian using the gen-
eralized pseudospectral method [104,105] on a nonuniform
grid and then numerically diagonalizing the resulting real-
symmetric matrix. Relevant computational parameters are the
number of grid points N , a mapping parameter L, and the max-
imum radius rmax. For continuum states, the radial functions
are computed by numerically integrating, at each one-electron
energy considered, the radial mean-field Schrödinger equa-
tion using the fourth-order Runge-Kutta method on a uniform
grid [106,107] with a radial step size dr. In our calculations,
N = 200, L = 1, rmax = 50 a.u., and dr = 0.005 a.u. are used.

To simulate ionization dynamics, coupled rate equa-
tions [20,108,109] are solved using the fourth-order Runge-
Kutta method. In our calculations, we treat x-ray-induced
photoionization, Auger-Meitner decay, and fluorescence. The
associated cross sections and rates are computed using the re-
sults of the radial-wave-function calculations described above.
In addition, for each process, shakeoff branching ratios are
calculated within the sudden approximation [110,111]. The
x-ray pulse is assumed to have a Gaussian temporal profile
with a duration τ (FWHM). The electronic population dy-
namics triggered by the x-ray pulse are computed for a time
interval that is eight times longer than the pulse duration τ .
The number of temporal grid points used is 20 000. Thus, for
τ = 10 fs, the temporal step size is 0.004 fs.

We confirmed that our results are convergent with respect
to all computational parameters.
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